

The manufacturer may use the mark:

Revision 5.0 August 2, 2018 Surveillance Audit Due August 1, 2021

Certificate / Certificat

Zertifikat / 合格証

L&T 1004017 C001

exida hereby confirms that the:

Ball Valves

L&T VALVES LIMITED Tamil Nadu- India

Has been assessed per the relevant requirements of:

IEC 61508 : 2010 Parts 1-7

and meets requirements providing a level of integrity to:

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{AVG} and Architecture Constraints must be verified for each application

Safety Function:

The Ball Valve will move to the designed safe position per the actuator design within the specified safety time.

Application Restrictions:

The unit must be properly designed into a Safety Instrumented Function per the Safety Manual requirements.

ANSI Accredited Program ISO/IEC 17065 PRODUCT CERTIFICATION BODY #1004

Evaluating Assessor

Certifying Assessor

Page 1 of 2

Certificate / Certificat / Zertifikat / 合格証 L&T 1004017 C001

Systematic Capability: SC 3 (SIL 3 Capable)

Random Capability: Type A, Route 2_H Device

PFH/PFD_{AVG} and Architecture Constraints must be verified for each application

Systematic Capability :

Ball Valves

The product has met manufacturer design process requirements of Safety Integrity Level (SIL) 3. These are intended to achieve sufficient integrity against systematic errors of design by the manufacturer.

A Safety Instrumented Function (SIF) designed with this product must not be used at a SIL level higher than stated.

Random Capability:

The SIL limit imposed by the Architectural Constraints must be met for each element. This device meets *exida* criteria for Route $2_{\rm H}$.

Static Application – Clean Service	λ_{SD}	λ _{su}	λ_{DD}	λ _{DU}
Full Stroke	0	0	0	603
Tight Shut-Off	0	0	0	1126
Open on Trip	0	105	0	498
Full Stroke with PVST [†]	0	0	260	343
Tight Shut-Off with PVST	0	0	260	866
Open on Trip with PVST	104	1	260	238
Static Application – Severe Service	λ_{SD}	λ _{su}	λ_{DD}	λ_{DU}
Static Application – Severe Service Full Stroke	λ _{sd}	λ _{su} 0	λ _{DD}	λ _{du} 998
Full Stroke	0	0	0	998
Full Stroke Tight Shut-Off	0	0 0	0	998 2023
Full Stroke Tight Shut-Off Open on Trip	0 0 0	0 0 201	0 0 0	998 2023 797

IEC 61508 Failure Rates in FIT*

* FIT = 1 failure / 10⁹ hours

[†] PVST = Partial Valve Stroke Test of a final element Device

SIL Verification:

The Safety Integrity Level (SIL) of an entire Safety Instrumented Function (SIF) must be verified via a calculation of PFH/PFD_{avg} considering redundant architectures, proof test interval, proof test effectiveness, any automatic diagnostics, average repair time and the specific failure rates of all products included in the SIF. Each element must be checked to assure compliance with minimum hardware fault tolerance (HFT) requirements.

The following documents are a mandatory part of certification:

Assessment Report: L&T Q10/04-017 R004

Safety Manual: FSM-001 Ball Valves

80 N Main St Sellersville, PA 18960

T-061, V3R1

Page 2 of 2